Locklin on science

Dynamite Cruiser Vesuvius

Posted in big machines by Scott Locklin on February 16, 2018

The 1800s were a time of revolution in technology. Everyone knows about the  H.M.S. Dreadnought, which made all other proto-battleships obsolete. There were a few false starts along these lines which were also interesting. One of the most hyped ones, at least as hyped as “stealth ships” or the “littoral combat ship” was the idea of the Dynamite Cruiser.

The Dynamite Cruiser Vesuvius was the only example of the kind. It was about as high tech as they come. Instead of using explosives to launch projectiles, it used compressed air. This made the first salvo completely silent. The main innovation was that the brobdingnagian 15″ guns which shot enormous quantities of explosive at the enemy. It was much faster than conventional ships, being lightly armored (only 900 tons, compared to an average of 4000 tons for a typical warship of its class) and equipped with enormous engines. The idea was to sneak up on the enemy, silently lob a couple of tons of dynamite on them and stealthily slip away. Back in the day, the perfidious Yankee’s idea was to build an enormous fleet of cheap  Dynamite Cruisers to challenge the European domination of the seas.

lookit dem gunz

In those days, filling shells with high explosives was a tricky business. To place this technology in historical context: the fact that it used an electric detonator was considered a really big deal. This thing was commissioned in 1890; a time when electricity and magic were pretty close to indistinguishable. We don’t have a parallel today, simply because technology has not advanced since 1970 or so, but imagine being in 1970 and being told you’d be able to carry a cell phone some day; that’s about the same as electrically detonated shells in 1890.

Black powder was still the main propellant used in launching shells back in those days: “smokeless” powders like cordite had not quite been invented yet. Guncotton was still high technology stuff of science fiction (in fact, this thing used a form of guncotton in its shells). Lots of early explosive shells would just explode inside their guns. So, early battle ships either used low explosives or solid shells. Everyone knew about dynamite: it was the new wonder technology of the age. More stable forms of high explosive which could survive launch via cannon hadn’t been discovered yet: picric acid explosive shells were some years away. TNT wasn’t used in shells until 1902. The main idea of the Dynamite Cruiser was to launch the fairly unstable explosive by a sort of aerial torpedo so it wouldn’t blow up inside the launching vessel’s cannon.

Image result for dynamite cruiser vesuvius

The fact that nobody has ever heard of the Vesuvius means it probably had a few problems. First problem: since it was a pneumatic launched projectile, it couldn’t use a gun turret. It was impossible to build air hoses which could withstand much pressure and be flexible enough to rotate. To this day, torpedo tubes only point forward or aft for the same reason. This meant the Vesuvius had to point itself at the enemy and hope that the bobbing of the sea didn’t bounce the point of impact around too much: a futile hope. It was also an extremely structurally unsound boat. It was built like a streamlined Yacht. But the designers managed to forget about the enormous cannon it sported in the front. This made it almost impossible to maneuver. In fact, it made the thing so structurally unsound, the bolts that held it together would explosively sheer in choppy water. The tanks and compressors which drove the cannon took up so much space in the boat, there wasn’t much room for people to do useful work. It was so cramped, it could only carry 30 shells. It also had a tiny beam, which, while useful for making for a good top speed, made it incredibly unstable as a gun platform; it rolled enormously and at a period of once every two seconds. Not good at all for a gun platform.

dem air valves

It was eventually used in the Spanish American war to bombard Cuba. It did succeed is scaring the crap out of the Spaniards, since they didn’t hear the report of the guns before it was raining humid dynamite. However, whatever damage it caused was accidental. The ineffectiveness of dynamite bombardment was rapidly realized, so the mighty Dynamite Cruiser was relegated to courier duties. Eventually it was refitted as an ordinary Torpedo boat, and then ignominiously sold for scrap.

I don’t know if there are any lessons to be learned from the Vesuvius. I guess the main one is a weapons system should be used in combat or something close to it before it is declared the latest thing. If we want to compare this giant leap forward in technology to modern American naval vessels, the LCS are so incredibly silly and can barely remain afloat.  Perhaps the Naval drone is more comparable in being “advanced,” expensive and completely untried. Or perhaps the government actually consists of anointed military genius Frederick Barbarosa types and I’ve been taking too much advantage of California’s legal marijuana crop in 2018.

I originally read about this thing in a Patton essay. Perhaps the best way to close is with what Patton said.

“When Samson slew the Philistines with the jawbone of an ass, he probably created such a vogue for the weapon that throughout the world no prudent donkey dared to bray. Certainly the advent of the atomic bomb was not half as startling as the initial appearance of gunpowder. In my own lifetime, I remember two inventions, or possibly three, which were supposed to stop war; namely the dynamite cruiser Vesuvius, the submarine, and the tank. Yet, wars go blithely on and will when our great-grandchildren are very old men.”


The Leduc ramjet

Posted in big machines by Scott Locklin on November 29, 2016

I ran across this gizmo from looking at Yann LeCun’s google plus profile, and wondering at the preposterous gadget sitting next to him at the top. Figuring out what it was, I realized the genius of the metaphor. Yann builds things (convolutional networks and deep learning in general) which might very well be the Leduc ramjets of machine learning or even “AI” if we are lucky. Unmistakably Phrench, as in both French and physics-based, original in conception, and the rough outlines of something that might become common in the future, even if the engineering of the insides eventually changes.


Rene Leduc was working on practical ramjet engines back in the 1930s. His research was interrupted by the war, but he was able to test his first ramjet in flight in 1946. The ramjet seems like a crazy idea for a military aircraft; ramjets don’t work until the plane is moving. A ramjet is essentially a tube you squirt fuel into which you light on fire. The fire won’t propel the engine forward unless there is already a great deal of air passing through. It isn’t that crazy if you can give it a good kick to get it into motion. If we stop to think about how practical supersonic aircraft worked from the 1950s on; they used afterburners. Afterburners to some approximation, operate much like inefficient ramjets; you squirt some extra fuel in the afterburning component of the engine and get a nice increase in thrust. Leduc wasn’t the only ramjet guy in town; the idea was in the proverbial air, if not the literal air. Alexander Lippisch (a German designer responsible for the rocket powered Komet, the F-106 and the B-58 Hustler) had actually sketched a design for a supersonic coal burning interceptor during WW-2, and his engine designer was eventually responsible for a supersonic ramjet built by another French company. The US also attempted a ramjet powered nuclear cruise missile, the SM-64 Navaho, which looks about as bizarre as the Leduc ramjets.


Navaho SM-84

In fact, early nautical anti-aircraft missiles such as the Rim-8 Talos used ramjets for later stages as well. The bleeding edge Russian air to air missile, the R-77, also uses ramjets as does a whole host of extremely effective Russian antiship missiles. Ramjets can do better than rockets for long range missilery as they are comparably simple, and hydrocarbon ramjets can have longer range than rockets. Sticking a man in a ramjet powered airframe isn’t that crazy an idea. It works for missiles.

The Leduc ramjets didn’t quite work as a practical military technology, in part due to aerodynamic problems, in part because they needed turbojets to get off the ground anyway, but they were important in developing further French fighter planes.  They were promising at the time and jam packed with innovative ideas; the first generation of them was much faster in both climb and final speed than contemporary turbojets.


Ultimately, their technology was a dead end, but what fascinates about them is how different, yet familiar they were. They look like modern aircraft from an alternate steampunk future. Consider a small detail of the airframe, such as the nose.  The idea was a canopy bubble would cause aerodynamic drag. Since ramjets operate best without any internal turbulence, the various scoops and side inlets you see in modern jets were non starters. So they put the poor pilot in a little tin can in the front of the thing. The result was, the earliest Leduc ramjet (the 0.10) looked like a Flash Gordon spaceship. The pilot was buried somewhere in the intake and had only tiny little portholes for visibility.


Later models incorporated more visibility by making a large plexiglass tube for the pilot to sit in. Get a load of the look of epic Gaulic bemusement on the pilot’s “avoir du cran” mug:

faire la moue

faire la moue


The later model shown above, the Leduc 0.22, actually had a turbojet which got it into the air. It was supposed to hit Mach-2, but never did. In part because the airframe didn’t take into account the “area rule” effect which made supersonic flight practical in early aircraft. But also in part because the French government withdrew funding from the project in favor of the legendary Dassault Mirage III; an aircraft so good it is still in service today.

The Leduc designs are tantalizing in that they were almost there. They produced 15,000 lbs of thrust, which was plenty for supersonic flight. A later ramjet fighter design, the Nord Griffon actually achieved supersonic flight, more or less by using a more conventional looking airframe. Alas, turbojets were ultimately less complex (and less interesting looking) so they ended up ruling the day.


As I keep saying, early technological development and innovative technology often looks very interesting indeed. In the early days people take big risks, and don’t really know what works right. If you look at a radio from the 1920s; they are completely fascinating with doodads sticking out all over the place. Radios in the 50s and 60s when it was down to a science were boring looking (and radios today are invisible). Innovative technologies look a certain way. They look surprising to the eye, because they’re actually something new. They look like science fiction because, when you make something new, you’re basically taking science fiction and turning it into technology.

Some videos:

Putin’s nuclear torpedo and Project Pluto

Posted in big machines by Scott Locklin on December 31, 2015

There was some wanking among the US  foreign policy wonkosphere about the  nuclear torpedo “accidentally” mentioned in a Russian news video.


The device described in the leak is a  megaton class long range nuclear torpedo. The idea is, if you build a big enough bomb and blow it off in coastal waters, it will create a 1000 foot high nuclear tidal wave that will physically wipe out coastal cities and Naval installations, as well as pollute them with radioactive fallout. If the Rooskies are working on such a thing, rather than trolling the twittering pustules in our foreign policy “elite,” it is certainly nothing new. Such a device was considered in the Soviet Union in the 1950s, and the original November class submarine design (the first non-US built nuclear sub) was designed around it. It was called the T-15 “land attack” torpedo.  Oddly this idea originated from America’s favorite Soviet dissident, Andrei Sakharov when thinking about delivery systems for his 100 megaton class devices. People forget that young Sakharov was kind of a dick. Mind you, the Soviet Navy sunk this idea, in part because it only had a range of 25 miles (meaning it was basically a suicide mission), but also, according to Sakharov’s autobiography, some grizzled old Admiral put it “we are Navy; we don’t make war on civilian populations…”

Notice the big hole in the front: that's where the torpedo went

Notice the big hole in the front: that’s where the original doomsday torpedo went

The gizmo shown in this recent Russian leak is  a modern incarnation of the T-15 land attack torpedo without the Project 627/November class submarine delivery system. Same 1.6 meter caliber, megaton class warhead and everything. The longer range  of 5000 miles versus the 25 of the T-15 could be considered an innovation, and is certainly possible, but it only has tactical implications. From a strategic point of view: they had the same idea  years ago, for roughly the same reasons. Fifties era Soviet nuclear weapons delivery systems were not as reliable as American ones. In the 50s it was because Soviet bombers of the era were junk (mostly copies of the B-29). If they’re building this now, it’s because they’re worried about US missile defense.


Various analysts have been speculating that the thing is wrapped in cobalt or something to make it more dirty, because the rooskie power point talks about area denial. While it’s entirely possible, these dopes posing as analysts have some weird ideas about what a nuclear weapon is, and what it does. Nobody seems to have noticed that there’s a nuclear reactor pushing the thing around; predumably one using liquid metal coolants like the Alfa class submarines. I’m pretty sure lighting off a nuke next to a nuclear reactor will make some nasty and long lived fallout. At 1 megaton, just the bomb casing and tamper makes a few hundred pounds of nasty long lived radioactive stuff. The physics package the Russians would  likely use (SS-18 Mod-6 rated at 20Mt, recently retired from deployment atop SS-18 satan missiles) is a fission-fusion-fission bomb, and inherently quite “dirty” since most of the energy is released from U-238. Worse still:  blowing up a 1-100 megaton device in coastal mud will  make lots of nasty fallout.  Sodium-24 (from the salt in the water) is deadly. Half life is around 15 hours, meaning it would be clear in a few days, but being around it for the time it is active …. Then there is sodium-22, which has a half life of two and a half years; nukes in the water make less of this than sodium-24, but, well, go look it up. There is all kinds of other stuff in soil and muck which makes for unpleasant fallout. There’s an interesting book (particularly the 1964 edition) called “The Effects of Nuclear Weapons” available on archive. Chapter 9 shows some of the fallout patterns you can expect from blowing something like this up. Or, you could use this calculator thing;  a 1Mt device makes a lethal fallout cloud over thousands of square kilometers.



The twittering pustules who pass for our foreign policy elite are horrified, just horrified that the rooskies would spook us with such a device.  As if this were somehow a morally inferior form of megadeath to lobbing a couple thousand half megaton nuclear missile warheads at your least favorite country. Apparently this is how civilized countries who do not possess enemies with a plurality of coastal cities exterminate their foes. I don’t understand such people. Nuclear war is bad in general, m’kay? Mass slaughter with a nuclear torpedo is not morally inferior to mass slaughter with an ICBM. More to the point, getting along with Russians is easy and vodka is cheaper and more effective than ABM (and doomsday torpedo) defenses. If we hired actual diplomats and people who study history, instead of narcissistic toadies and sinister neocon apparatchiks to labor in our foreign services … maybe the Russians wouldn’t troll us with giant nuke torpedoes.

Doomsday engineering is often stranger than any science fiction. The things they built back in the cold war were weird.  While the US never admitted to building any 100 megaton land torpedoes (probably because Russia doesn’t have as many important coastal cities as the US does), we certainly worked on some completely bonkers nuclear objects.


Imagine  a locomotive sized cruise missile, powered by a nuclear ramjet, cruising at mach-3 at tree level. The cruise missile  showers the landscape with two dozen hydrogen bombs of the megaton class, or one big one in the 20 megaton class. When it is finished its job of raining electric death mushrooms all over the enemy, it cruises around farting deadly radioactive dust and flattening cities with the sheer power of the sonic boom… for months. In principle, such a device can go on practically forever. If I were to use such a contraption as a plot device, you’d probably think it was far fetched. Such a thing was almost built by the Vought corporation 50 years ago. Click on the link. The Vought corporation thought it was cool enough to brag about it on their website (please don’t take it down guys; anyway if you do, I’ll put it back up).


65,000 lbs, 80 feet long, with the terrifying code name, SLAM (Supersonic, Low Altitude Missile), or … “project Pluto.” This thing was perilously close to being built. They tested the engines at full scale and full power at Jackass Flats, and the guidance system was good enough they used essentially the same thing in the Tomahawk cruise missile. The problem wasn’t technical  … but how to test it? The fact that it was an enormous nuclear ramjet made it inherently rather dangerous. Someone suggested flight testing it on a tether in the desert. That would have been quite a tether to hold a mach 3 locomotive in place. Fortunately, we had rocket scientists who built ICBMs that worked. Of course, having an ICBM class booster would have been necessary to make the thing work in the first place (nuclear ramjets don’t start working until they’re moving at a decent velocity), which makes you wonder why they ever thought this was a good idea. Probably because people who dream these things up are barking looneys. Not that I wouldn’t have worked on this project, given the chance.


The ceramic matrix for the reactor was actually made by the  Coors Porcelain company. Yes, the same company that makes shitty  beer has been (and continues to be) an innovator in ceramics; and this originated from the founder’s needing good materials for beer bottles and inventing beer cans. According to Jalopnik, they used exhaust header paint ordered from hot rod magazine to protect some of the electronic components. Apparently when they lit the reactor off at full power for the first time, they got so shitfaced, the project director (Merkle; yes, nano-dude’s father) had vitamin B shots issued to the celebrants the following day. Yes, I would have worked on project SLAM: as far as I can tell, it was the most epic redneck project ever funded by the US government. Not that we should have built such a thing, but holy radioactive doomsday smoke, Batman, it would have been a fun job for a few years.

I wouldn’t blame the Russians if they wanted to build a giant nuclear  torpedo-codpiece when the US sends Russiophobic dipshits like Michael McFaul to represent us in  Russia (look at his twitter feed; it is completely bonkers). I certainly hope they don’t build such a thing. It would also be nice if the US would stop screwing around with crap like that as well. Pretty sure it’s a giant troll, but the T-15 and Project Pluto were not.

Interesting pdf on Project Pluto:


Edit add:fascinating Russian wikipedia page MichaelMoser123 posted to hacker news:


Can the Su-25 intercept and shoot down a 777?

Posted in big machines, War nerding by Scott Locklin on July 21, 2014

Personal background: I’ve flown Malaysian Airlines and declare it better and more civilized than any US airline. I’ve been to Ukraine on a business-vacation. I’m sympathetic to the aspirations of the long suffering Ukrainian people. I’m also sympathetic to the position of the Russian government with respect to Ukraine, which is, after all, sort of like their version of Canada, if Canada had annexed part of New England in 1991. I am not sympathetic to the claque of sinister war mongers and imperial Gauleiters in the US State department with respect to their activities in Ukraine and towards Russia. If I had my way, creeps like Vicky “fuck the EU” Nuland and Geoff Pyatt would be facing prison and the firing squad for what they’ve done over there. In my opinion, US policy towards Russia since the fall of the Soviet Union has been knavish, evil and disgusting. My opinion isn’t a mere slavophilic eccentricity; George Kennan, our greatest Cold War diplomat, said more or less the same things before he died.

If this was a shoot down by Donetsk separatists, and even if the Russians supplied the missiles to the separatists (who could have captured them from Ukrainian forces, or simply borrowed a couple from the local arms factories), this doesn’t make the Russians culpable for the tragedy. By that logic, the US is responsible for all the bad things done with weapons it supplies to its proxies, such as ISIS in Syria and Iraq, which is arguably worse. Certainly the US is responsible for the escalation of the situation in Ukraine. I say all this, because passions are high, and the war drums are beating. I am not a  war monger, or apologist for anybody; in fact, I’m the closest thing you’re going to get to an unbiased observer in this disaster. I have no horse in this race. I wish they’d all learn to get along.

So, the Rooskies are now implying that a Ukrainian Su-25 may have shot down flight MH17. Facts and objective reality seem to be in short supply in Western coverage of the Ukraine crisis; I aim to supply some. I am going with the assumption that the Rooskies are telling the truth, and that there was indeed a Ukrainian Su-25 where they said there was. They said the Su-25 came within 2 to 3 miles of the 777.


Everyone agrees that the Boeing 777-200ER was flying over the separatist region at 33,000 feet. A Boeing 777’s cruising speed is about 560mph or Mach 0.84. Its mass is about 500,000 pounds, and it has a wingspan and length of about 200 feet each. The MH17 was flying from West to East, more or less.

The Su-25 Frogfoot is a ground attack aircraft; a modern Sturmovik or, if you like, a Rooskie version of the A-10 Warthog. The wingspan and length of the Su-25 is about 50 feet each, and the mass is about 38,000lbs with a combat load. The ceiling of an unladen Su-25 is about 23,000 feet. With full combat load, an Su-25 can only make it to 16,000 feet. This low combat ceiling was actually a problem in the Soviet-Afghanistan war; the hot air and the tall mountains made it less useful than it could have been. At altitude, the maximum speed of the unladen Su-25 is Mach 0.82; probably considerably lower with combat loads. For air to air armament, it has a pair of 30mm cannons and carries the R-60 missile. The Su-25 is also capable of carrying the Kh-13, though it is not clear that the Ukrainians deploy this missile on their Su-25s. For the sake of argument, we’ll talk about it anyway.


Since it was a Ukrainian Su-25, we can also assume it was heading West to East; more or less the same trajectory as flight MH17. It could have been traveling in some other trajectory, but we can already see the problem with an Su-25 intercepting a 777; it’s too low, and too slow. If you want to believe  the crackpot idea that Ukrainian government were a bunch of sinister schemers who shot down MH17 on purpose, an Su-25 is pretty much the worst armed military aircraft you can imagine for such a task. The Ukrainian air force has a dozen Su-27s and two-dozen Mig-29s perfectly capable of intercepting and shooting down a 777. They also have the Buk missile, and are  capable of placing it somewhere near the Donetsk separatists if they wanted to make them look bad. So, the theory that the evil Ukrainians shot down a 777 with a Su-25 on purpose is … extremely unlikely.

Could an Su-25 have shot down a 777 by accident? Fog of war and all that? Perhaps they thought it was a Russian  plane? Well, let’s see how likely that is. The weapons of the Su-25 capable of doing this are the cannons, the R-60 missile (and its later evolutions, such as the R-73E) and the  K-13 missile.

Cannons: impossible. The Su-25 was at minimum 10,000 feet below the 777. This means simply pointing the cannon at the 777 without stalling would have been a challenge. The ballistic trajectory of the cannon fire would have made this worse. The Gsh-30-2 cannon fires a round which travels at only 2800 feet per second, significantly lower than, say, the round fired by a  338 Lapua sniper rifle. Imagine trying to shoot down an airplane with a rifle, from 2-3 miles away using your eyeball, in a plane, at a ballistic angle. If the MH17 was somehow taken out by cannon fire, it will have obvious 30mm holes in the fuselage. None have been spotted so far.

K-13 missile: extremely unlikely. The K-13 is a Soviet copy of the 50s era AIM-9 sidewinder; an infrared homing missile. Amusingly, the Soviets obtained the AIM-9 design during a skirmish between China and Taiwan in 1958; a dud got stuck in a Mig-17. It is not clear that the Ukrainian air force fields these weapons with their Su-25’s; they’re out of date, and mostly considered useless. Worse, the effective range of a K-13 is only about 1.2 miles, putting the 777 out of effective range. Sure, a K-13 miiiight have made it to a big lumbering 777 with its two big, hot turbofans, but it seems pretty unlikely; a lucky shot. The 16lb of the K-13 warhead is certainly capable of doing harm to a 777’s engines. Maybe it would have even taken out the whole airliner. Doubtful though.

The K-13 AA missile

The K-13 AA missile

R-60 missile: extremely unlikely. If a Su-25 was firing missiles at a 777, this is probably what it was using. The R-60 is also an IR guided missile, though some of the later models use radar proximity fuzing.  Unlike the K-13, this is a modern missile, and it is more likely to  have hit its target if fired. Why is it unlikely? Well, first off, it is unlikely the Ukrainian Su-25s were armed with them in the first place: these are ground attack planes, fighting in a region where the enemy has no aircraft. More importantly, the R-60 has a tiny little 6lb warhead, which is only really dangerous to fragile fighter aircraft. In 1988, an R-60 was fired at a BAe-125 in Botswana. The BAe-125 being a sort of Limey Lear jet, which weighs a mere 25,000lbs; this aircraft is 20 times smaller than a 777 by mass. The BAe-125 was inconvenienced by the R-60, which knocked one of its engines off, but it wasn’t shot down; it landed without further incident. A 777 is vastly larger and more sturdy than any Limey Lear jet. People may recall the KAL007 incident where an airliner was shot down by a Soviet interceptor. The Su-15 flagon interceptor which accomplished this used a brobdingnagian K-8 missile, with an 88lb warhead, which was designed to take out large aircraft. Not a shrimpy little R-60. The R-60 is such a pipsqueak of a missile, it is referred to as the “aphid.”

The R-60 aphid

The R-60 aphid

That’s it; those are the only tools available to the Su-25 for air to air combat. The other available  weapons are bombs and air to surface missiles, which are even more incapable of shooting down anything which is  10,000 feet above the Su-25.

My guess as to what happened … somebody … probably the Donetsk separatists (the least experienced, least well trained, and least well plugged into a military information network), fired a surface to air missile at something they thought was an enemy plane. It could have been the Buk SA-11/17 with its 150lb warhead and 75,000 foot range, just like everyone is reporting. Another candidate is the Kub SAM, which is an underrated SAM platform also in use in that part of the world. Yet another possibility is the S-125 Pechora, which isn’t deployed in Ukraine or Russia, but it is probably still manufactured in the Donbass region. A less likely candidate is the S-75 Dvina (the same thing that took out Gary Powers), though the primitive guidance system and probable lack of deployed installations in Ukraine and Russia make this unlikely. The fact that the MH17 disappeared from radar at 33,000 feet, and the condition of the wreckage indicates it was something really big that hit flight MH17; not a piddly little aphid missile. The pictures of the wreckage don’t indicate any sort of little missile strike which might have knocked off an engine; it looks like the whole plane was shredded. Both engines came down in the same area, more or less in one piece.

Whatever it was, it wasn’t an Su-25. There is also no use going all “Guns of August” on the Russians over something that was very likely beyond their control. Here’s hoping all parties concerned learn to resolve their differences in a civilized manner.

War is bad, m'kay?

War is bad, m’kay?

Interesting links from the rumor mill (as they come in):


Update July 22:
Nobody else has yet noticed that Donetsk manufactures SAMs, or that there are several other potential sources and varieties of such weapons. The Russians are sticking with the Su-25 idea, and haven’t corroborated the Su-27 story, making it seem much less likely.

“Blame the Rooskie” war mongers would do well to remember the Vincennes incident, where the US shot down an Iranian air liner over Iranian airspace, killing a comparable number of innocent civilians.

Update July 23:
A run down of some of the capabilities of the Buk system from “The National Interest” (one of the few sane US foreign policy periodicals):


 Update Aug 16:

A SAM based video game